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Propagation of acoustic waves in nematic elastomers

E. M. Terentjev,1 I. V. Kamotski,2 D. D. Zakharov,2 and L. J. Fradkin2
1Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
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We develop a theory of elastic waves in oriented monodomain nematic elastomers. The effect of soft
elasticity, combined with the Leslie-Ericksen version of dissipation function, results in an unusual dispersion
and anomalous anisotropy of shear acoustic waves. A characteristic time scale of nematic rotation determines
the crossover frequency, below which waves of some polarizations have a very strong attenuation while others
experience no dissipation at all. We study the anisotropy of low-frequency Poynting vectors and wave fronts,
and discuss a ‘‘squeeze’’ effect of energy transfer nonparallel to the wave vector. Based on these theoretical
results, an application, the acoustic polarizer, is proposed.
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Liquid crystalline elastomers~LCE! represent an exciting
physical system that combines the local orientational sy
metry breaking and the entropic rubber elasticity, produc
a number of unique physical phenomena. In ordinary ela
solids, the deformations are created by relative movemen
the same atoms~or molecules! that form the bonded low-
symmetry lattice. Hence, when the deformation is small,
lattice symmetry is preserved and one obtains an ordin
anisotropic elastic response. In contrast, in polymer n
works, the macroscopic elasticity arises from the entro
change of chains on relative movement of their cross-lin
end points, which are relatively far apart. On a smaller len
scale, a liquid crystalline order can be established wit
these chains. In nematic elastomers, the local director
rotate, in principle, independently of deformation of t
cross-linking points. Such an internal degree of freed
within the elastic body constitutes what is known as
Cosserat medium: the relative movement of cross-link
points provides elastic strains and forces, while the direc
rotation causes local torques and couple stresses. Rece
view articles summarize these ideas and report physica
fects, predicted theoretically and found experimentally
nematic LCE; e.g., Refs.@1,2#.

A pioneering study of oscillating dynamic-mechanic
properties@3# has been followed by further work on aligne
monodomain nematic LCE,@4,5#, which demonstrated a dra
matic reduction of storage elastic modulusG8 and the asso-
ciated increase in the loss factor tand in certain geometries
of deformation. This effect, named the ‘‘dynamic soft ela
ticity,’’ allows one to directly probe the basic equilibrium
properties of nematic rubbers and also access the new ki
parameters—viscous coefficients and relaxation times.

Here we follow the earlier theoretical work@6#, which
formulated the constitutive relations of linear viscoelastic
for nematic elastomers in the hydrodynamic~low-frequency!
limit, and develop a theory of acoustic waves propagat
through an elastic medium with the mobile anisotropic m
crostructure and dissipation. Viscoelastic waves in an
tropic media have been thoroughly investigated over the
decade@7#. We apply a similar analysis to the nematic ru
bers and obtain unusual predictions for directions of ene
propagation and conditions for anomalous dissipation.
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also find the configurations of propagation and polarizati
where the attenuation vanishes. This ‘‘acoustic polarizatio
similar to the optical polarization in a birefringent medium
could lead to many new discoveries and applications.

Equilibrium elastic properties of monodomain nema
rubbers are well studied, both theoretically and experim
tally, and are described at some length in review articles
molecular theory of ideal nematic networks@8# gives the
elastic free energy density in terms of the Cauchy strain t
sor and the the uniaxial matrices of chain step lengths be
and after the directorn has rotated by a certain angle durin
the deformation:, i j 5,'d i j 1@, i2,'#ninj . One finds that,
apart from the universal rubber-elastic energy scalem
5cxkBT, with cx proportional to the cross-linking density
the theory depends on a single equilibrium parameter
5, i /,' , the ratio of the principal step lengths of the anis
tropic polymer backbone@or equivalently,r 5(Ri /R')2 for
the principal values of gyration radii#. This ratio is a function
of the nematic order parameter.

As in all polymeric materials, the bulk modulus is ind
pendent of the configurational entropy of polymer chains a
mainly determined by molecular forces resisting the co
pression of a liquid,B̃;1010 J/m3, much greater than the
typical value of rubber modulusm;106 J/m3. In this paper,
we shall explicitly implement the incompressible limit.

The small-deformation limit of the elastic energy depen
on «̃ ik5« ik2 1

3 Tr @«= #d ik , the traceless part of linear symme
ric strain« ik5 1

2 (]kui1] iuk), with u the displacement vector
which is the only variable of classical continuum elastic
@9#. In a system with an internal orientational degree of fre
dom, the antisymmetric part of strain,V5 1

2 curl u, also con-
tributes to the physical response via the relative rotati
denoted here by the vectorQ[V2@n3dn#. The elastic po-
tential energy density of a uniaxial incompressible so
takes the form@10#

F5C1~n•«=•n!212C4@n3«=3n#214C5~@n3«=•n# !2

1
1

2
D1@n3Q#21D2n•«=•@n3Q#. ~1!

All constants in Eq.~1! are of the same order of magnitud
©2002 The American Physical Society01-1
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similar to the rubber modulusm, and can be explicitly rep-
resented as functions ofr @8#. In the isotropic phase, th
elastic energy reduces to the classical Lame´ expression.

The Leslie-Ericksen theory of anisotropic viscous dissi
tion in a nematic liquid can be written using the same sy
metry grouping of terms as in Eq.~1! @6#. The entropy pro-
duction density is a quadratic form of the correspond
velocities:

Tṡ5A1~n•«=̇ •n!212A4@n3«=̇3n#214A5~@n3«=̇ •n# !2

1
1

2
g1@n3Q̇#21g2n•«=̇ •@n3Q̇#. ~2!

It describes two types of dissipations, by shear flow and
rotation of the director, and vanishes for rigid rotations. T
constants are linear combinations of classical Leslie coe
cients. In the isotropic limit, one finds a single shear visc
ity, A152A452A5→h. The identical symmetry of variable
and their velocities leads to the viscous coefficients rep
sented as products of the corresponding elastic constants
appropriate relaxation times:

Ai'tRCi , g1't1D1 , g2't2D2 , ~3!

wheretR is of the order of Rouse time for the correspondi
polymer backbone, whilet1,2 are the nematic relaxatio
times. One expects, in many polymer systems, to findtR
;1025–1026 s @11#, while the nematic director relaxatio
time is t1;1022 s from Ref.@12#.

Since the elastic potential energy has a similar form as
entropy production, the equations of motion for both t
translational and the rotational degrees of freedom are s
lar to the classical Leslie-Ericksen theory@6,13#:

rü5¹•s= sym, ~4!

05n3@~D11g1] t!@n3Q#1~D21g1] t!n•«= #, ~5!

where the second equation is the balance of torques. Ch
ing the coordinate axise3 along the undistorted directorn,
the components of the symmetric part of the stress ten
take the form

s11
sym54~C41A4] t!«11,

s22
sym54~C41A4] t!«22,

s33
sym52~C11A1] t!«33,

s13
sym54~C51A5] t!«132

1
2 ~D21g2] t!Q2 ,

s23
sym54~C51A5] t!«231

1
2 ~D21g2] t!Q1 ,

s12
sym54~C41A4] t!«12. ~6!

Since we are only interested in small distortions of the m
terial, the convective contribution to all material derivativ
are neglected.
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Let us seek the elastic wave solutions of our dissipat
dynamic system in the usual form

u~ t,x!5Ueivt2 ik•x, ~7!

whereU5(U1 ,U2 ,U3) is the amplitude vector. In order to
obtain a closed equation for the elastic displacementu(t,x),
we need to eliminate the rotational variableQ from the stress
in the right hand side of Eq.~4!. This is a straightforward
procedure of substituting the formal solution of Eq.~5!,

S Q1

Q2
D 5

D21 ivg2

D11 ivg1
S 2«23

«13
D , ~8!

into the corresponding components of stresss= sym. This op-
eration@6,14,15# is known as the integration out of the inte
nal degree of freedom. In the absence of viscous terms,
result is the famous renormalization of the shear modu
C5, leading to the soft-elasticity condition. In our case, it
complicated by the viscous terms, but the essence rem
the same,

C5
R~v!5C52

D2
2

8D1

~11 ivt2!
2

~11 ivtR!~11 ivt1!
~9!

@neglecting the small differences between relaxation tim
tR( i ) for eachCi-Ai pair#. Another aspect of this renorma
ization is a constraint on relaxation times. It is easy to che
that the stability requirement of non-negativity of the ave
age Tṡ demandsA52g2

2/8g1>0, which in turn, requires
that t1tR>t2

2 in ideally soft materials.
Substituting Eq.~7! into the resulting renormalized ver

sion of Eq.~4!, we arrive at the set of algebraic equations f
the unknown amplitude vector, wave vector, and frequen
U, k andv:

@~11 ivtR!L= ~v,k!2rv2I=#U50, ~10!

where I= is the 333 unit matrix andL= is the symmetric
matrix with elements,

L~v,k!1154C4k1
212C4k2

212C5
R~v!k3

2 ,

L~v,k!2252C4k1
214C4k2

212C5
R~v!k3

2 ,

L~v,k!3352C5
R~v!~k1

21k2
2!12C1k3

2 ,

L~v,k!1252C4k1k2 ,

L~v,k!1352C5
R~v!k1k3 ,

L~v,k!2352C5
R~v!k2k3 . ~11!

The matrixL= has the same structure as arises in the theor
the wave propagation in classical, uniaxially symmet
~transversely isotropic! solids@16#; the crucial difference for
nematic elastomers is the frequency-dependent renorma
constantC5

R(v).
In general, the anisotropic medium supports three diff

ent complex speeds of wave propagationc5v/k, which de-
1-2
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termine uniquely the kinematic and dynamical properties
the corresponding waves. We concentrate here on the
called homogeneous plane waves when the wave vector
be written ask[(Rek1 i Im k) k̂, with the real unit vectork̂
specifying the unique direction, and Rek and Imk having
different signs @18#. Traditionally, the principal types o
waves, as determined by their speeds, are called quasi
pressional~qP!, quasishear horizontal~qSH!, and quasishea
vertical ~qSV! @17#. It is possible to show that the quasicom
pressional waves do not satisfy the incompressibility con
tion and, therefore, are not considered in this paper.
quasishear waves have the respective vector amplitu
UqSHin3 k̂, for k̂in, see Fig. 1~a!, and a complicated form o
UqSV is given, e.g., by Eq.~3.12! in Ref. @17#. The special
case ofk̂in is mentioned below.

It follows that the wave amplitudes depend on the angla

betweenk̂ andn. The dispersion relationships are easily o
tained from the general Eq.~10!. For the qSH waves, we
have

rv252@C4~k1
21k2

2!1C5
R~v!k3

2#~11 ivtR!, ~12!

cqSH
2 5

2

r
@C4 sin2a1C5

R~v!cos2 a#~11 ivtR!, ~13!

the last equation describing the square of the complex sp
cqSH(v,a).

In general, the qSV waves are not purely shear and t
not always satisfy the incompressibility condition. Howev
when the wave vectorsk5k' lie in the plane of isotropy
perpendicular ton, they can carry the qSV waves, which a
purely shear for all frequencies, with their amplitude vect
Ui in the direction ofn, see Fig. 1~b!. The corresponding
dispersion relationship and the resulting complex speed

rv252C5
R~v!~11 ivtR!k'

2 , ~14!

cqSV
2 5

2

r
C5

R~v!~11 ivtR!. ~15!

Finally, we remark that whenk̂in, the corresponding am
plitude vectorU' is arbitrary in the plane of isotropy. In thi
case, the qSV speed equals the qSH speed as given b
~13! at a50, and therefore, it makes no sense to distingu
between qSV and qSH waves for this geometry.

The corresponding phase velocities (Rec) k̂ and attenua-
tions (2Im k) k̂ are presented in Fig. 2 for qSH waves,

FIG. 1. Diagram of wave propagation for~a! qSH wave, with

UqSHin3 k̂, and~b! qSV wave, withUqSVin.
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dimensionless frequenciesvt150.1, 1, and 10. In making
the plots, we take the typical values of nematic elastom
parameters:r 53 and the Rouse time scaletR;1022t1, fol-
lowing @6,12#. Figure 2 indicates that higher frequenci
propagate at a higher speed, but also encounter highe
tenuation. However, the low-frequency qSH waves propag
ing in the plane of isotropy encounter a very small loss;
dissipation at all in the case of the ideally soft nematic el
tomer. At vt1@1, the director relaxation is frozen and w
find the increasing attenuation in all directions.

To study the energy transfer by acoustic waves, let
introduce the mean Poynting vector~the vector of power
flow density, averaged over the oscillation period! as P
52 1

2 Rê s= sym
•u̇* &. Figure 3~a! shows the polar plots of the

projection (P• k̂) k̂ and the complementary projectionP•(I=
2 k̂k̂), for vt150.1 and 1, in units ofm3/2r21/2. Note that
for vt1!1, the energy flows in the direction different to th
direction of wave propagation, and it turns out that~unless
both lie in the equatorial plane of isotropy or alongn) the
wave vectork̂ is always closer to then axis than the Poyn-
ting vector. Atvt1@1, we find k̂ is approximatelyiP.

In Fig. 3~b!, we present the wave front, which is define
following Ref. @7# as the locus of the end points of the e
ergy velocity vectors,

FIG. 2. Polar plots of~a! phase speed Rec(v,a), in units of
Am/r, and~b! attenuation Imk(v,a), in units ofAr/mt1

2, for the
qSH waves propagating in the meridional plane~the directorn is
vertical!. Curves forvt150.1, 1, and 10 are labeled on plots.

FIG. 3. Polar plots, in the meridional plane aroundn, of ~a! the

projection of the Poynting vector onk̂ ~solid lines! and the comple-
mentary projection~dashed lines!, and ~b! the wave front for the
qSH waves, forvt150.1, 1, and 10. The amplitude ofP increases
with frequency and, atvt150.1, P is scaled up by a factor of 100
to fit on the same graph.
1-3
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cE5
2P

^ 1
2 ru̇•u̇* 1 1

2 Res= sym:«=* &
,

where in denominator, one finds the total mean energy d
sity: the sum of the kinetic and the real part of the comp
strain energy density; the latter can be conveniently ev
ated as (1/2)rv2 exp@2i arg (c)#u•u* for homogeneous
waves.

Figures 2 and 3 show that attenuation and energy tran
functions are much more anisotropic than the solid itself.
particular, in the plane isotropy (a5p/2), no attenuation
takes place for the qSH waves; the phase speed iscqSH

'A2C4 /r. Figure 3~b! shows that under the above cond
tions, the energy velocity is at its maximum and is also f
quency independent.

Nonideal~semisoft! nematic elastomers have a small co
rection to the principal relative-rotation constantD1 @6,8#,
deflecting it from an exact ‘‘soft-elasticity’’ conditionC5

2D1
2/8D250; all other coefficients could remain the sam

as in the ideal case. A large body of experimental evide
suggests that the semisoft correction,D1→D11am, is in-
deed small (a!1) in most studied materials. In our case, t
results summarized in the figures are modified only sligh
To illustrate, in Fig. 4, we compare the limiting case
~semisoft! qSH wave, propagating in the equatorial plane
isotropy, with the qSV wave. One can see that, for the cho
values of parameters, the qSH phase speed remains con
while the qSV speed grows with frequency. The lo
frequency limit has a singularity in both the qSV speed a
its attenuation: RecqSV'2Am/r(vt1)1/2, before reaching
the saturation atvt1.1. ~In the semisoft case, the singula
ity is removed, the speed reaching a small constant va
RecqSV'4Aam/r. Remarkably, the attenuation of the qS
wave is hundreds of times higher than that of the semi
qSH(a5p/2) wave; this is the effect of acoustic polariz
tion.
.
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To summarize, we have developed a first-approximat
theory of acoustic waves in nematic elastomers: a unia
viscoelastic medium with a mobile rotational internal degr
of freedom. Results and predictions include the very stro
anisotropy of wave attenuation and elastic energy trans
and theoretical constraints on the possible propagation ge
etry and material parameters. A possibility of practical app
cation of such materials as efficient acoustic polarizers
very attractive: one only has to look at the effect, the abil
to control and manipulate, the optical polarization had o
variety of modern technologies. However, much remains
be investigated in this field. In particular, one needs to re
amine the condition of incompressibility, which we assum
here for simplicity of argument: at higher frequencies, t
effect of compressional waves could become noticeable.

We appreciate valuable discussions with M. Warner, T.
Lubensky, and W. Stille. This work has been supported
the EPSRC, Grant No. GR/M31552, in the Center for Wav
and Fields at the School of Engineering of South Ba
University.

FIG. 4. Comparison between the qSV wave~solid lines! and the
case of qSH wave propagating in the plane'n ~dashed lines!: ~a!
the phase speed and~b! the attenuation; units same as in Fig.
Note, that the attenuation for qSH wave ata5p/2 is very low even
for semisoft elastomer and it is scaled up by a factor of 100 to fit
the same graph.
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