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Propagation of acoustic waves in nematic elastomers
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We develop a theory of elastic waves in oriented monodomain nematic elastomers. The effect of soft
elasticity, combined with the Leslie-Ericksen version of dissipation function, results in an unusual dispersion
and anomalous anisotropy of shear acoustic waves. A characteristic time scale of nematic rotation determines
the crossover frequency, below which waves of some polarizations have a very strong attenuation while others
experience no dissipation at all. We study the anisotropy of low-frequency Poynting vectors and wave fronts,
and discuss a “squeeze” effect of energy transfer nonparallel to the wave vector. Based on these theoretical
results, an application, the acoustic polarizer, is proposed.
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Liquid crystalline elastomerd_CE) represent an exciting also find the configurations of propagation and polarization,
physical system that combines the local orientational symwhere the attenuation vanishes. This “acoustic polarization,”
metry breaking and the entropic rubber elasticity, producingsimilar to the optical polarization in a birefringent medium,
a number of unique physical phenomena. In ordinary elasti€ould lead to many new discoveries and applications.
solids, the deformations are created by relative movement of Equilibrium elastic properties of monodomain nematic
the same atomséor molecules that form the bonded low- rubbers are well studied, both theoretically and experimen-
symmetry lattice. Hence, when the deformation is small, thdally, and are described at some length in review articles. A
lattice symmetry is preserved and one obtains an ordinarjnolecular theory of ideal nematic network8] gives the
anisotropic elastic response. In contrast, in polymer netelastic free energy density in terms of the Cauchy strain ten-
works, the macroscopic elasticity arises from the entropysOr and the the uniaxial matrices of chain step lengths before
change of chains on relative movement of their cross-linked@nd after the directon has rotated by a certain angle during
end points, which are relatively far apart. On a smaller lengttthe deformationt;;= ¢, &;+[¢;—¢_]n;n;. One finds that,
scale, a liquid crystalline order can be established withirgpart from the universal rubber-elastic energy scale
these chains. In nematic elastomers, the local director caff CxkgT, with ¢, proportional to the cross-linking density,
rotate, in principle, independently of deformation of thethe theory depends on a single equilibrium parameter
cross-linking points. Such an internal degree of freedonw={ /¢, , the ratio of the principal step lengths of the aniso-
within the elastic body constitutes what is known as thetropic polymer backbongor equivalently,r=(R”/RL)2 for
Cosserat medium: the relative movement of cross-linkinghe principal values of gyration radiiThis ratio is a function
points provides elastic strains and forces, while the directopf the nematic order parameter.
rotation causes local torques and couple stresses. Recent re-As in all polymeric materials, the bulk modulus is inde-
view articles summarize these ideas and report physical efsendent of the configurational entropy of polymer chains and
fects, predicted theoretically and found experimentally inmainly determined by molecular forces resisting the com-
nematic LCE; e.g., Ref$1,2]. pression of a liquid B~10'° J/n?, much greater than the

A pioneering study of oscillating dynamic-mechanical typical value of rubber modulug~10° J/n. In this paper,
propertieq 3] has been followed by further work on aligned we shall explicitly implement the incompressible limit.
monodomain nematic LCH#,5], which demonstrated a dra-  The small-deformation limit of the elastic energy depends
matlc r_eductlon _of storage elastic mpdumé gnd the assO-  onG. =g, — 1Tr[€]8,, the traceless part of linear symmet-
ciated increase in the loss factor t&m certain geometries . straine ;.= % (d,U;+ d;u,), with u the displacement vector,

of deformation. This effect, named the *dynamic soft elas-yhich is the only variable of classical continuum elasticity
ticity,” allows one to directly probe the basic equilibrium rg) |, 5 system with an internal orientational degree of free-
properties of nematic rubbers and also access the new kinetiy 1, the antisymmetric part of straif= Lcurl u, also con-

parameters—viscous coefficients and relaxation times. g tes to the physical response via the relative rotation,

Here we follow the earlier theoretical woffl6], which denoted here by the vectér=Q—[nx 5n]. The elastic po-
formulated the constitutive relations of linear viscoelasticity;qniq) energy density of a uniaxial incompressible solid

for nematic elastomers in the hydrodynartimwv-frequency takes the forn{10]

limit, and develop a theory of acoustic waves propagating

through an elastic r_‘ne@um W|th_ the moplle anisotropic mi-  F=C,(n-g-n)?+2C,[nX gxn]2+4Cs([nX g-n])?
crostructure and dissipation. Viscoelastic waves in aniso-
tropic media have been thoroughly investigated over the last
decadd7]. We apply a similar analysis to the nematic rub-
bers and obtain unusual predictions for directions of energy
propagation and conditions for anomalous dissipation. We\ll constants in Eq(1) are of the same order of magnitude,

1
+5D1[nX @1+ D;yn-g-[NX O], (1)
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similar to the rubber modulug, and can be explicitly rep- Let us seek the elastic wave solutions of our dissipative
resented as functions of [8]. In the isotropic phase, the dynamic system in the usual form
elastic energy reduces to the classical Lawpression. S
The Leslie-Ericksen theory of anisotropic viscous dissipa- u(t,x)=Ue'" 1%, @)
tion in a nematic liquid can be written using the same sym-

. . whereU=(U,,U,,U3) is the amplitude vector. In order to
metry grouping of terms as in Eql) [6]. The entropy pro- . 1 . e
duction density is a quadratic form of the correspondin obtain a closed equation for the elastic displacentix),

velocities: %e need to eliminate the rotational varialidfrom the stress
' in the right hand side of Eq4). This is a straightforward
procedure of substituting the formal solution of Ef),

o)zl )

Ts=A;(n-g-n)%+2A,[nX X n]?+4Ag([nX £-n])?

®

1 . . .
+ 5 71[NXOF+ y,n- £:[nxO]. 2 @, Ditiwy

€13

It describes two types of dissipations, by shear flow and b)}'"to.the corresp_onding components of Str?égm' This op-
rotation of the director, and vanishes for rigid rotations. Thegration[6,14,13 is known as the integration out of the inter-

constants are linear combinations of classical Leslie coeffif@ degree of freedom. In the absence of viscous terms, the

cients. In the isotropic limit, one finds a single shear viscos!€Sult is the famous renormalization of the shear modulus

ity, A, =2A,=2Ac— 7. The identical symmetry of variables Cs, Iec_etding to the sof_t-elasticity condition. In our case, it is_
and their velocities leads to the viscous coefficients repre(-:ompl'cated by the viscous terms, but the essence remains
sented as products of the corresponding elastic constants aftf Same,
appropriate relaxation times: . D2 (1+iwry)?
Co(w)=Cs— . -
Ai%TRCi! ’Yl%TlDll ’YZNTZDZv (3) 8Dl (1+IwTR)(1+Ile)

(€)

wherer is of the order of Rouse time for the correspondinglneglecting the small differences between relaxation times
polymer backbone, whiler; , are the nematic relaxation 7r(l) for eachCi-A; pair]. Another aspect of this renormal-

times. One expects, in many polymer systems, to figd ization is a cq_nstramt_on relaxation times. IF is easy to check

~1075-10"% s [11], while the nematic director relaxation that the stability requirement of non-negativity of the aver-
time is 7,~10 2 s from Ref.[12]. ageTs demandsA5—y§/8y1>0, which in turn, requires

Since the elastic potential energy has a similar form as théhat 7, 7r= 7-5 in ideally soft materials.

entropy production, the equations of motion for both the Substituting Eq.(7) into the resulting renormalized ver-

translational and the rotational degrees of freedom are simsion of Eq.(4), we arrive at the set of algebraic equations for

lar to the classical Leslie-Ericksen thed®,13]: the unknown amplitude vector, wave vector, and frequency,

U, k and w:

pu=v-g*™, 4 :

- [(1+IwTR)/}(w,k)—pwzl]UZO, (10

0=nX[(Dy+y29)[NX O]+ (Do+ yidn-el. - (9 where is the 3<3 unit matrix andA is the symmetric

where the second equation is the balance of torques. Choo@1alrx with elements,

ing the coordinate axis; along the undistorted directar, _ 2, 2, 5cR 2
the components of the symmetric part of the stress tensor Al k)1 =4Caks +2Ckpt+2C5(w)ks,
take the form A(@,K) 9= 2C4k2+ 4C K2+ 2CR(w)K2,

sym__ +
71t~ HCaF Add)ers, A(@,K)35=2C8(w) (K3+K3) +2C4K3,

sym_
05 =4(Cy+tA4d)e0, A(w,k)1,=2Ck k>,

035 = 2Cot Ad)ezs, A(0,K)15=2CE(@)kiks,
oP"=4(Cs+Asd)e15~ 3(Dat 7201) 02, A@,K) 2= 2CR(w)koks. (12)
oH"=4(Cs+ Asdy) €23+ 3 (Dot v,0) 01, The matrixA has the same structure as arises in the theory of

the wave propagation in classical, uniaxially symmetric
oY"=4(Cyt+ Ayd) e, (6) (transversely isotropjcsolids[16]; the crucial difference for

nematic elastomers is the frequency-dependent renormalized
Since we are only interested in small distortions of the maconstantC?(w).
terial, the convective contribution to all material derivatives In general, the anisotropic medium supports three differ-
are neglected. ent complex speeds of wave propagatichw/k, which de-
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FIG. 1. Diagram of wave propagation féa) gSH wave, with RN st 1
UHInx k, and(b) gSV wave, withUsY|n. -1 -1
(@ (b)

termine uniquely the kinematic and dynamical properties of _ ]
the corresponding waves. We concentrate here on the so- FIG- 2. Polar plots of@ phase speed Re{w,q), in units of
called homogeneous plane waves when the wave vector ma(/TP, and(b) attenuation Ink(w,«), in units of yp/us, for the
be written ask=(Rek+i Imk)k, with the real unit vectok dSH waves propagating In the meridional plaiee directorn is

. . . N . vertica). Curves forom;=0.1, 1, and 10 are labeled on plots.
specifying the unique direction, and Reand Imk having
different signs[18]. Traditionally, the principal types of
waves, as determined by their speeds, are called quasicorimensionless frequenciesr;=0.1, 1, and 10. In making
pressionalqP), quasishear horizontéjSH), and quasishear the plots, we take the typical values of nematic elastomer
vertical (qSV) [17]. It is possible to show that the quasicom- parameterst =3 and the Rouse time scatg~ 10 27, fol-
pressional waves do not satisfy the incompressibility condifowing [6,12]. Figure 2 indicates that higher frequencies
tion and, therefore, are not considered in this paper. Thgropagate at a higher speed, but also encounter higher at-
quasishear waves have the respective vector amplitudegsnuation. However, the low-frequency qSH waves propagat-
USHInxk, for k|n, see Fig. 1a), and a complicated form of ing in the plane of isotropy encounter a very small loss; no
U%Vis given, e.g., by Eq(3.12 in Ref.[17]. The special dissipation at all in the case of the ideally soft nematic elas-
case ofk||n is mentioned below. tomer. Atw7,;>1, the director relaxation is frozen and we

It follows that the wave amplitudes depend on the amgle find the increasing attenuation in all directions.
betweerk andn. The dispersion relationships are easily ob- T0 study the energy transfer by acoustic waves, let us
tained from the general Eq10). For the qSH waves, we introduce the mean Poynting vecttthe vector of power
have flow density, averaged over the oscillation pejicas P
=—3 Reg(g™™ u*). Figure 3a) shows the polar plots of the
projection P-k)k and the complementary projectid® (]
5 —kk), for om;=0.1 and 1, in units of+*%» V2. Note that
si=—[Cysirfa+Cl(w)cof a](1+iwrg), (13  for o<1, the energy flows in the direction different to the

p direction of wave propagation, and it turns out tianless

the last equation describing the square of the complex speetbmh lie in the equatorial plane of isotropy or alony the

CosH @, ). wave vectork is always closer to the axis than the Poyn-
In general, the gSV waves are not purely shear and thusging vector. Atwr;>1, we findk is approximatelyl|P.

not always satisfy the incompressibility condition. However, In Fig. 3(b), we present the wave front, which is defined

when the wave vectork=k, lie in the plane of isotropy following Ref.[7] as the locus of the end points of the en-

perpendicular ta, they can carry the qSV waves, which are ergy velocity vectors,

purely shear for all frequencies, with their amplitude vectors

Uy in the direction ofn, see Fig. ). The corresponding

dispersion relationship and the resulting complex speed are

p?=2[C4(K2+k3)+CR(0)K3](1+iwTR), (12)

pw —2C5(w)(l+|a)7'R)k , (14

2 2 R H

Finally, we remark that whekl|n, the corresponding am-
plitude vectorU, is arbitrary in the plane of isotropy. In this

case, the qSV speed equals the qSH speed as glven by FIG. 3. Polar plots, in the meridional plane aroumdof (a) the

H)%Jectlon of the Poynting vector dn(solid line9 and the comple-

mentary projectiondashed lines and (b) the wave front for the
between gSV and qSH waves for this geometry. gSH waves, fow7,=0.1, 1, and 10. The amplitude Bfincreases

The corresponding phase velocities @k and attenua- yjith frequency and, abr,=0.1, P is scaled up by a factor of 100,
tions (—Imk)k are presented in Fig. 2 for qSH waves, atto fit on the same graph.
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(3pu-u* +3ReaY™g*) ’

CE:

Phase speed
<
w
Attenuation

where in denominator, one finds the total mean energy den
sity: the sum of the kinetic and the real part of the complex R R — S B —

strain energy density; the latter can be conveniently evalu- Reduced frequency o, Reduced frequency T,

ated as (1/2)w?exd2iarg (c)u-u* for homogeneous (@) ®)
waves.

Figures 2 and 3 show that attenuation and energy transfer FIG. 4. Comparison between the qSV wasgelid lines and the
functions are much more anisotropic than the solid itself. Incase of gSH wave propagating in the plane (dashed lines (a)
particular, in the plane isotropya(=7/2), no attenuation the phase speed ar(d)_ the attenuation; units same as in Fig. 2.
takes place for the qSH waves; the phase speec,ds Note, that the attenuation for qSH waveaat /2 is very low even

~\/2C,/p. Figure 3b) shows that under the above condi- for semisoft elastomer and it is scaled up by a factor of 100 to fit on

. - . . . th h.
tions, the energy velocity is at its maximum and is also fre- © same grap

guency independent.

Nonideal(semisofi nematic elastomers have a small cor- To summarize, we have developed a first-approximation
rection to the principal relative-rotation constadt [6,8], theory of acoustic waves in nematic elastomers: a uniaxial
deflecting it from an exact “soft-elasticity” conditiol€;  viscoelastic medium with a mobile rotational internal degree
—D?/8D,=0; all other coefficients could remain the sameof freedom. Results and predictions include the very strong
as in the ideal case. A large body of experimental evidencanisotropy of wave attenuation and elastic energy transfer,
suggests that the semisoft correcti@,—D;+au, is in-  and theoretical constraints on the possible propagation geom-
deed small 4<1) in most studied materials. In our case, theetry and material parameters. A possibility of practical appli-
results summarized in the figures are modified only slightlycation of such materials as efficient acoustic polarizers is
To illustrate, in Fig. 4, we compare the limiting case of very attractive: one only has to look at the effect, the ability
(semisoff gSH wave, propagating in the equatorial plane ofto control and manipulate, the optical polarization had on a
isotropy, with the qSV wave. One can see that, for the chosegariety of modern technologies. However, much remains to
values of parameters, the qSH phase speed remains constagd, investigated in this field. In particular, one needs to reex-
while the qSV speed grows with frequency. The low- gmine the condition of incompressibility, which we assumed
frequency limit has a singularity in both the qSV speed anthere for simplicity of argument: at higher frequencies, the

: H . ~ 1/2 H . .
its attenuation: Reqsy~2\u/p(wTy)™, before reaching effect of compressional waves could become noticeable.
the saturation ab7;>1. (In the semisoft case, the singular-

ity is removed, the speed reaching a small constant value We appreciate valuable discussions with M. Warner, T. C.
Recysy~4vaul/p. Remarkably, the attenuation of the gSV Lubensky, and W. Stille. This work has been supported by
wave is hundreds of times higher than that of the semisofthe EPSRC, Grant No. GR/M31552, in the Center for Waves
qSH(a= w/2) wave; this is the effect of acoustic polariza- and Fields at the School of Engineering of South Bank

tion. University.
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